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Atomic configurations generation by a random 
method for glassy alloy Ge0.14As0. Te0.  
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Three different models of the amorphous alloy Geo.14Aso.43Teo.43, obtained by quenching the 
molten mixture of the elements, were built by computer simulation of an X-ray diffraction 
experiment, taking the tetra- and tricoordinated germanium hypotheses into account. The main 
structural parameters of these models were analysed and the results did not vary greatly from 
those given in the literature for similar alloys. 

1. Introduction 
As a result of the development of the atomic theory, 
interest in the structure of matter has increased. 
Although this interest initially only referred to crys- 
talline substances, it is also possible to extend it 
to amorphous compounds [1 3]. The study of the 
structure of solid materials, both glassy and crystal- 
line, is an important consideration when attempting to 
explain the macroscopic properties observed in them, 
and it is absolutely necessary when trying to establish 
a formal theory to explain these properties. 

The glassy alloys in the Ge As-Te system are 
highly conductive [4], and also exhibit the switching 
phenomenon and the memory effect [5-11]. In this 
paper, three-dimensional models of the short-range 
order for alloy Ge0.14As0.43Te0.43, which belongs to the 
above glassy system, have been generated, using 
the Metrtpolis-Monte Carlo random method [12], 
accordingly modified. In building these models, 
the geometric and coordination conditions obtained 
by ourselves [13] through the experimental radial 
distribution function (RDF) were taken into account. 

2. Theory 
The basic object of determining the structure of an 
amorphous solid is to construct atomic models which 
verify experimentally obtained structural information 
and are in agreement with the physical and chemical 
properties of the material. 

Although there are many methods for building 
atomic models of the structure of amorphous materials, 
it appears that, among the random base methods, the 
Metr6polis-Monte Carlo method is the most adequate 
for describing short-range order in a glassy solid 
obtained by quenching its molten mixture, as it is the 
one that best simulates the structural characteristics of 
this type of alloy. 

For this work, a variation of the Monte Carlo 
method has been used, similar to the procedure used 
by Rechtin et al. [14]. The variations refer mainly to 
the geometric and coordination conditions, which 
imply semirandomness in the construction of the 
atomic configuration. 

There are two stages in the process of building the 

model: generation of the initial configuration, and 
refining of the initial model. 

2.1. Genera t ion  of the  initial con f igu ra t ion  
In order to establish the position of the atoms which 
will generate the model, it is necessary to choose the 
volume in which these are going to be located. Bearing 
in mind that RDF, 4nr2e(r), where Q is the atomic 
density of the material, is a function which only depends 
on distance, r, one reference origin atom away, it is 
usually considered that the sphere is the most ade- 
quate geometric space in which to locate the model. 

Once the space characteristics of the initial con- 
figuration are decided, the next step is to determine 
N, the number of atoms that can be located in it, 
depending on the experimental density of the material. 
As the models generated from a number of positions 
equal to the above number of atoms are low in 
coordination even if they are adjusted correctly from 
a geometric point of view, it is necessary to modify the 
initial configuration by saturating the chosen volume 
with positions, which increases coordination. The 
positions thus generated must meet with the restrictions 
already mentioned. 

(i) The first restrictive condition refers to the fact 
that the distance between two first-neighbour positions 
must be inside the definition interval of the first RDF 
peak. 

(ii) The second restriction is related to the possible 
variation interval of the bond angle. This interval is 
obtained by establishing the extreme positions that 
two atoms can occupy, which, together with the 
reference position, determine the angle. Considering 
(rlmin , rlmax ) and (rzmin, rZmax ) to  be the limit radii 
which correspond to the first and second coordination 
spheres, the extreme positions mentioned above, 
which are shown in Fig. 1, are defined by (q m~n, £2max) 
and (rl . . . .  retain), and we obtain from these 

q~min -~- 2 sin i F2min 
2rl max 

(1) 
~max = 2 s i n  - I  r2m"x 

2rl rain 

which are the limits of the bond angle interval. 
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Figure 1 Limits of  the bond angle interval. 

Another condition to consider is the number of the 
atoms of each type, in the first coordination sphere, 
which is given as the maximum coordination for each 
of them. 

When any of these conditions is not met, the 
position created is rejected and another is generated, 
and so on until the whole volume is saturated. Then, 
the positions with the lowest coordination are elimin- 
ated until what is left is a number equal to that of 
the atoms compatible with the experimental density, 
and the different types of  atom are assigned to the 
positions in a semi-random way. 

Once the initial atomic configuration is established, 
the next step is to find the corresponding reduced 
RDF, rGmod(r), by simulating a diffraction process in 
the model. In order to compare this function with the 
experimental one, it is essential that the sample and 
the model be of similar size and shape. Simulation of 
the spherical sample is obtained by multiplying the 
function rGexp(r) by that proposed by Mason [15], 
which is given by: 

(r) 
D(r) = 1 . 0 -  1.5 ~-~ + 0.5 ~-~ (2) 

and represents the probability of  finding distance r 
inside a sphere with a radius of R. 

Comparison of the two reduced RDFs is done by 
mean square deviation, e2, which is used as a 
criterion for deciding on the validity of the generated 
configuration and is given by the expression 

~2 _ 1 ~ [riGexp(ri)D(ri) _ riGmoa(ri)]2 (3) 
M i=1 

for the r i which correspond to the M points taken in 
the comparison. 

2.2. Ref in ing the  initial mode l  
The object of this process is to find the atomic 
configuration whose reduced RDF best fits the 
experimental one; there are two stages: position 
refining and thermal factor adjustment. 

The atomic position refining process is done using 
the Metrdpolis-Monte Carlo technique [12], which 
consists basically of randomly modifying the initial 
position of a randomly chosen atom, and accepting 
the new position if the restrictions imposed by the 
experimental RD F  are complied with and, at the same 
time, mean square deviation decreases. 

When using this technique the amplitude, P, of the 
atomic movements is arbitrarily fixed and can be 
modified throughout the refinement process, varying, 
according to Alberdi [16], from 0.05 nm at the begin- 
ning of the process to 0.01 nm at the end, in order to 
achieve a quicker convergence. Values lower than 
0.01 nm have no physical meaning, as they are masked 
by thermal vibration. 

Position refining is considered finished when the 
computation time necessary to obtain a valid move- 
ment is too large and mean square deviation does not 
sensibly improve. 

For  the refining of thermal factors, the correspond- 
ing coordination spheres are defined according to the 
experimental RDF,  and a0 = 0.01 nm is taken as the 
initial value of the isotropic factor. The set of values 
for ai which best adjust the model-reduced RDF to the 
experimental one is calculated by an iterative least 
square method, in successive cycles until variation for ai 
is less than 10 -4 nm. 

Once the refining process is finished, the resulting 
atomic configuration is suitable for carrying out a 
statistical evaluation of the main structural parameters 
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of the alloy (coordinations, bond lengths, bond 
angles, etc.). 

3. Description and analysis of the 
generated models 

The mathematical space which may be considered 
adequate for generating the possible structural models 
of the alloy Geo.14Aso.43Te043 is the volume limited by 
a spherical surface with a radius of 1 nm, the space 
which best verifies the condition of being large enough 
to conveniently represent the sample, from a statistical 
point of view, and small enough for the computation 
time not to be too long. The number of atoms of the 
alloy which can be placed in the volume according to 
the experimental density (~0 = 5.51gcm -3) [13] is 
142, distributed in the following manner: 20 Ge atoms, 
61 As atoms and 61 Te atoms. 

The generation of atomic positions was carried out 
by finding the cartesian coordinates from three random 
numbers, and bearing in mind all the geometric and 
coordination conditions which must be met with, 
deduced from analysis of experimental RDF [13], and 
which in this case are: 

(i) the distance between first neighbours must be 
inside the interval (0.225 nm, 0.305 nm), which defines 
the first experimental RDF peak; 

(ii) the bond angle between an atom and two of its 
first neighbours can vary between 70 ° and 150 °, 
as is inferred from the extreme positions (0.225 nm, 
0.435nm) and (0.305nm, 0.345nm) which the two 
atoms that determine the angle together with the 
reference atom can occupy. 

(iii) The coordination attributed to each element 
must be such that the weight mean coordination for 
the model agrees with that obtained experimentally. 

Keeping in mind the tetra- and tricoordinated 
germanium hypotheses, expounded and theoretically 
confirmed in [13], and which agree with the conclusions 
reached by Betts et al. [17], a theoretical model has 
been generated, imposing the condition of tetra- 
coordinated Ge (Ge(4)) and another model with the 
condition of tricoordinated Ge (Ge(3)). 

3.1. Structural models based on the Ge(4) 
and Ge(3) hypotheses 

Considering the coordination and geometric restric- 
tions already mentioned, 200 positions were generated 
for each of the models, and were reduced to 142, the 
number predicted from experimental density, by 
eliminating those with lowest coordination. The 
following step was the assignment of atoms to their 

T A B  L E I Position refining process for Ge(4) and Ge(3) models 

Model P Movement  Squared 
(nm) intervals deviation 

(nm) 

Ge(4) 0.05 1-394 0.006 83 
0.03 395-467 0.004 41 
0.01 468-  585 0.003 06 

Ge(3) 0.05 1-443 0.005 78 
0.03 444-505 0.003 64 
0.01 506-657 0.001 87 

proper positions in each model, placing the germanium 
atoms in the maximum coordination positions , being 
4 in the first model and 3 in the second, whereas the 
other elements were randomly placed in the remaining 
positions. The reduced RDF for each configuration 
was found, and was compared to the experimental 
RDF, modified by the finite size simulation function 
[15], with the result that the mean square deviation 
between the theoretical and experimental functions 
was 0.201 47 nm in the case of Ge(4) and 0.246 50 nm 
in the case of Ge(3). 

Considering that the initial models were suitable for 
obtaining a relatively quick reduced-RDF adjustment 
to the experimental RDF, the next step was position 
refining by successive atom movements of amplitude 
P, adding the restriction of not allowing movements 
which mean a break in germanium atom bonds, and 
so maintain the coordination predicted for this 
element in each case. 

Throughout the position refining process, both 
models behaved as shown in Table I, in which mean 
square deviation refers to the last movement in each 
interval. The position refining process was considered 
finished for each model when the number of rejected 
movements was too high and the mean square 
deviation did not vary significantly. 

The last step in the building of structural models of 
the alloy Ge0.14 As0.43 Te0.43 was thermal factor refining. 
This was carried out by defining the five coordination 
spheres whose extreme radii are shown in Table II; by 
using the iterative least square method already 
mentioned, the isotropic factor values, cq, shown in 
Table II for both atomic configurations, were found 
for each sphere. 

After finishing the thermal factor refining process, 
the square deviations between the theoretical and 
experimental values of rG(r) were reduced to 
0.002 97 nm for the tetrahedric germanium model and 
to 0.0018Into for the tricoordinated germanium 
model. The reduced RDF for each model is shown in 
Fig. 2a and b, together with the experimental RDF, 
after the refining process. 

The space representations of both configurations 
are shown in Figs 3 and 4, which reflect tetrahedrons 
centred on germanium atoms, in the case of the tetra- 
coordinated germanium, and triangular pyramids 
with one vertex occupied by this element, in the case 
of tricoordinated germanium. Both the tetrehedrons 
and the triangular pyramids are joined together 
forming networks of structural elements which form 
each of the models. 

These theoretical models, built by random methods 
and taking into account the structural information 

T A B L E  II  Thermal factor refining for Ge(4) and Ge(3) models 

Coordination rmi n rma x O" i (nm) 
sphere order (nm) (nm) 

Ge(4) Ge(3) 

1st 0.000 0.300 0.009 77 0.009 75 
2rid 0.300 0.480 0.008 55 0.009 12 
3rd 0.480 0.670 0.011 30 0.009 80 
4th 0.670 0.830 0.01308 0.01265 
5th 0.830 1.000 0.0! 1 20 0.012 52 
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Figure 2 Representations of ( - - - )  calculated and 
( ) experimental RDFs. 

obtained from experimental RDF, should be as 
representative as possible of the actual structure of the 
alloy in question. One way of estimating concordance 
between these models and the atomic arrangement of 
the alloy is to analyse the main structural parameters, 
coordinations and mean bond distances which can be 
obtained from them. 

One important point to bear in mind when statisti- 
cally analysing the generated models is the comparison 
between the coordinations which result from their 
elements, and those of the structural units, which, 
according to the established hypotheses, may be 
postulated from information given by experimental 
RDF. 

T Y 

Table III shows the coordinations for each element 
in the alloy Ge014As0.43Te0.43 in each of the generated 
models, and, in parentheses, the coordinations pre- 
dicted theoretically from the corresponding hypotheses 
[13]. For each model we may observe the existence of 
coordination defects, a fact which shows the presence 
of atoms with non-saturated bonds, which may be 
partly justified by the finite nature of the models. In 
the Ge(4) model, 50% of the dicoordinated arsenic 
atoms (As(2)) and 75% of the monocoordinated 
tellurium atoms (Te(1)) are less than 0.2nm away 
from the surface of the sphere that encloses the model, 
and can saturate their bonds with other elements 
outside it. In much the same way, in the Ge(3)-based 

X 

Figure 3 Spatial representation of the model of 
alloy Ge0.14As0.43Te0.43 by hypothesis of four-fold 
coordinated germanium. 
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Figure 4 Spatial representation of the model 
of alloy Geo.i4Aso.43Teo.43 by hypothesis of 
three-fold coordination for germanium. 

X 

structural configuration, 33% of the As(2) atoms and 
65% of the Te(l) atoms are also less than 0.2 nm away 
from the surface of the model. The monocoordinated 
As atoms, which appear in both configurations, may 
exhibit bond defects that cannot be explained by the 
finite size of the models. It is also important to note 
the presence of overcoordinated atoms, Te(3) and 
As(4), which is in accordance with the literature 
[18, 19] on alloys containing these elements. 

Another interesting aspect of  the generated models 
is the mean bond length in the different pairs of 
elements in the alloy, to be compared to those of the 
other similar compositions; this will result in more 
accurate information on the validity of the models. 

Table IV shows the mean bond distances of all 
possible pairs in each model. It may be observed that 
these distances are very similar in both configurations: 
in the least favourable case, the difference is less than 
1.5%. 

The great similarity in bond distances for both of 
the generated models, together with the fact that the 
theoretical rG(r) fits the experimental rG(r), in both 
the Ge(4) and the Ge(3) configurations, gives substance 
to the idea that the actual structure of the material is 
formed by a network of structural units centred on 
Ge(4) and Ge(3) atoms, which coexist simultaneously 

in the same model, a fact which has led us to build 
a theoretical atomic configuration based on this 
hypothesis. 

3.2. Structural model based on the 
simultaneous Ge(4) and Ge(3) 
hypotheses 

This model was generated in much the same way as 
that described above, with the only difference that 
breakdown in germanium atom bonds was allowed so 
that some of them would take tetracoordination and 
others would take tricoordination, as presupposed. 

The initial configuration and its reduced RDF were 
obtained; the latter was compared to experimental 
RDF,  and, as in the case of Ge(4), mean square 
deviation was found to be 0.20147nm. During the 
position refining process, 377 moves with an amplitude 
of 0.05 nm were made; on reaching a deviation of  
0.008 70 nm, the amplitude was reduced to P = 0.03 nm 
until move number 481, in which e = 0.00344nm, 
continuing with moves of 0.01 nm up to move number 
618, in which the refining process was considered 
finished with a mean square deviation of 0.001 89 nm. 
Fig. 5 shows the experimental and model rG(r)s. 

Fig. 6 shows a space representation of  the created 
atomic configuration, in which appear tetrahedra 

T A B L E  II I  Model coordinations 

Model Atom type Coordination 

4 3 2 1 0 

Ge(4) Ge 20(20) 0(0) 0(0) 0(0) 
As 17(0) 22(61)  19(0) 3(0) 
Te 0(0) 10(0) 36(61)  15(0) 

Ge(3) Ge 0(0) 20(20) 0(0) 0(0) 
As 0(10) 42(51)  15(0) 4(0) 
Te 0(0) 15(10)  27(51)  17(0) 

T A B L E  IV Averaged bonding distances 

Bond (d )  (nm) 

Ge(4) Ge(3) 

0(0)  Ge-Ge 0.252 0.251 
0(0) Ge-As 0.265 0.262 
0(0) Ge Te 0.260 0.257 
0(0) As As 0.257 0.254 
0(0) As-Te 0.259 0.259 
2(0)  Te-Te 0.260 0.260 
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Figure 5 Representation of ( - - - )  cal- 
culated and ( ) experimental RDFs for 
model based on the simultaneous Ge(4) 
and Ge(3) hypotheses. 

centred on germanium atoms and triangular pyramids 
with this element in one of their vertices. Both 
structural units are interlaced, forming a network 
which is the structure of the alloy. 

In this model, as in those generated previously, 
there are bond defects. Many of these defects belong 
to atoms which are less than a first neighbour's 
distance away from the periphery of the sphere, 
and could be saturated by hypothetical external 
neighbours. In the case of elements with two or more 
bond defects, it may be admitted that these could be 
due to the finite size of the model, when the atom in 
question is less than 0.1 t n m  away from the surface; 
this possibility takes into account both the mean 
distance between first neighbours and the mean bond 
angle. The model contains 13.20% of bond defects 
pertaining to atoms which are not in a situation that 
would allow them to be saturated by possible external 
neighbours. However, the existence of bond defects is 
a consequence inherent to the method of preparation 
of chalcogenide glasses. 

The mean bond distances calculated for this model 
were compared to those of the other alloys of similar 
elements cited in the literature, with the following 
results. 

(i) The mean value of the G e - G e  bond lengths, 

r Y 

theoretically calculated, is 0.253 nm, which is relatively 
higher than 0.247 nm, the value found for this bond in 
films of amorphous Ge [20]; however, it is close to the 
distance of 0.251nm belonging to the Ge-As-Se 
system [21], and practically the same as the value of 
the G e - G e  distance in amorphous germanium, which 
is 0.254 nm [22]. 

(ii) The Ge-As and Ge-Te bond lengths are 0.247 
and 0.259 nm, respectively, very similar to the distances 
cited in the literature [21, 23-27] for these bonds. 

(iii) In the case of As-As, the generated model gave 
a mean bond length of 0.256 nm, a value which is close, 
by defect and by excess, to 0.259 and 0.253 nm, which 
are the lengths of this bond in alloys As0.20Se0.50Te0.30 
[19] and A10.~0As0.a0Te0.50 [28], respectively; and it is 
practically equal to the 0.257 nm found for this bond 
in the glassy composition As0.45Se0.10Te0.45 [29]. 

(iv) The As-Te bond length found for the theoretical 
model is 0.261 nm, which is in accordance with the 
0.258 nm length in alloy As0.45Se0.~0Te045 [29], and the 
sum of covalent radii in the elements [27]. 

(v) The model gave a value of 0.262 nm for the 
Te-Te bond; this is very close to 0.260 nm, which is the 
pertinent length in alloy As0.40Se0.30Te030 [30], and 
it is exactly the same as the length cited in the literature 
[28, 31] for the compositions A10.20As0.40Te0.40 and 
A10.23 Te0.77 • 

X 

Figure 6 Spatial representation of model 
based on the simultaneous Ge(4) and 
Ge(3) hypotheses. 
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T A B  LE  V Averaged bonding angles 

Type (~)  (deg) Material Reference 

Ge 112.0 Geo.laASo.a3Teo.43 Present work 
108.0 Geo.2o Aso.4o Seo.4o [21 ] 
109.5 Tetrahedric angle 

As 107.3 Geo.14 Aso.43 Teo.43 Present work 
108.2 Aso.45 Seo.loTeo.45 [29] 
107.1 AsSe glass [32] 

106.7 Aso.2oSeo.soTeo.30 [19] 

Te 106.5 Geo.14 Aso.43 Teo.43 Present work 
106.8 Aso.2o Seo.5o Teo.3o [ 19] 
107.0 Aso.45 Seo.lo Teo.45 [29] 
102.0-109.5 TeGe glass [33] 

Detailed analysis of the theoretical values shows, as 
we have seen, close accordance between these values 
and bibliographic data, so they may be considered to 
represent the bond lengths in the actual structure of 
the alloy. 

Another interesting parameter which supplies 
information on the actual atomic structure of a glassy 
solid is the mean bond angle of each element with two 
of its first neighbours. It is therefore usual to carry out 
a comparative analysis of the mean values of these 
angles and those obtained through bibliographical 
data. Table V shows these values for the model, 
together with those quoted in the literature for similar 
compounds. It may be observed that all the values 
calculated can be considered acceptable, if we take 
into account that bond-angle distortion is typical of 
glassy materials and that, in the least favourable case, 
the difference between the bond angles in the model 
and the values quoted in the literature was less than 
3.5%. 

4. Conclusions 
Three space models of the glassy alloy Ge0.14As0.43Te043 
were built, using the Metr6polis-Monte Carlo ran- 
dom technique; the geometric conditions, deduced 
from the radial distribution function obtained by 
X-ray diffraction, were taken into account. 

The tri- and tetracoordinated germanium hypotheses 
propounded in the literature were also considered for 
the building of the models. 

The first two models, Ge(4) and Ge(3), gave very 
similar structural data, a fact which leads us to believe 
that the theoretical model that best fits the actual 
structure of the compound is one in which tetra- 
coordinated germanium atoms and tricoordinated 
germanium atoms coexist. 

The model based on this hypothesis may be described 
as a tridimensional network of covalent bonds, some 
of which are centred on germanium atoms, forming 
tetrahedra, and the rest of which are arranged 
following the edges of a triangular pyramid, one of 
whose vertices is occupied by a germanium atom. 
These structural units are joined together by arsenic 

and tellurium atoms or chains of atoms that form a 
compact network. 
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